Indian Statistical Institute, Bangalore

M. Math. First Year, Second Semester Functional Analysis

Mid-term Examination	Date: 20 February 2024
Maximum marks: 90	Time: $10:00$ AM– $1:00$ PM (3 hours)
	Instructor: Chaitanya G K

1. Let $X = C^{1}[a, b]$, the space of all continuously differentiable functions on [a, b]. For each $f \in X$, let

$$||f|| = ||f||_{\infty} + ||f'||_{\infty},$$

$$||f||_1 = |f(a)| + ||f'||_{\infty},$$

where f' is the derivative of f. Show that X is a Banach space with either of the norms. Show also that, for all $f \in X$,

$$||f||_1 \le ||f|| \le (b-a+1)||f||_1,$$

the constant b - a + 1 being the best possible. [15]

2. Prove that

$$\lim_{p \to \infty} \|x\|_p = \|x\|_{\infty}$$

for all $x \in \mathbb{K}^n$.

3. Let X and Y be normed linear spaces such that $X \neq \{0\}$. If $\mathcal{B}(X, Y)$ is a Banach space, prove that Y is a Banach space. [10]

[10]

- 4. Is l^1 reflexive? Justify your answer. [15]
- 5. Let X be a normed linear space over \mathbb{C} and $f : \mathbb{C} \to X$ be such that $g \circ f$ is bounded and analytic on \mathbb{C} for every $g \in X^*$. Show that f is a constant function on \mathbb{C} . [7]
- 6. State and prove Riesz representation theorem (for functionals on Hilbert spaces). [8]
- 7. Are the Riesz representation theorem and projection theorem valid in general inner product spaces? Justify your answer. [8+7]
- 8. Let $T \in \mathcal{B}(H)$, where H is a Hilbert space. Show that T is unitary if and only if it maps every total orthonormal set $\{u_i : i \in \Lambda\}$ onto a total orthonormal set $\{T(u_i) : i \in \Lambda\}$. [10]
- 9. Let H be a Hilbert space of dimension at least two. Show that there exists a bounded linear operator on H that is not normal. [10]